Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries†
نویسندگان
چکیده
Highly stable LiV3O8 with a nanosheet-structure was successfully prepared using polyethylene glycol (PEG) polymer in the precursor solution as the structure modifying agent, followed by calcination in air at 400 C, 450 C, 500 C, and 550 C. These materials provide the best electrochemical performance ever reported for LiV3O8 crystalline electrodes, with a specific discharge capacity of 260 mAh g 1 and no capacity fading over 100 cycles at 100 mA g . The excellent cyclic stability and high specific discharge capacity of the material are attributed to the novel nanosheets structure formed in LiV3O8. These LiV3O8 nanosheets are good candidates for cathode materials for high-energy lithium battery applications.
منابع مشابه
Template free synthesis of LiV3O8 nanorods as a cathode material for high-rate secondary lithium batteries
A novel, template-free, low-temperature method has been developed to synthesize LiV3O8 cathode material for high-power secondary lithium (Li) batteries. The LiV3O8 prepared using this new method was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The thermal decomposition process was investigated using thermogravimetric (...
متن کاملHierarchical MnCo2O4 nanosheet arrays/carbon cloths as integrated anodes for lithium-ion batteries with improved performance.
To solve the reduced output voltage caused by the high lithium redox potential of Co3O4 when applied as an anode material in full cells, an effective strategy is to partially replace Co by Mn to form MnCo2O4 without changing the original crystal structure. Herein, 3D hierarchical MnCo2O4 nanosheets arrays grown via a hydrothermal method on carbon cloths, as binder-free anodes for lithium-ion ba...
متن کاملFabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage.
MoS2 nanosheet@TiO2 nanotube hybrid nanostructures were successfully prepared by a facile two-step method: prefabrication of porous TiO2 nanotubes based on a sol-gel method template against polymeric nanotubes, and then assembly of MoS2 nanoclusters that consist of ultrathin nanosheets through a solvothermal process. These hybrid nanostructures were characterized by scanning electron microscopy...
متن کاملVanadium Oxide Nanostructures for Lithium Battery Applications
Lithium and Lithium-ion batteries for portable electronic devices and hybrid electric vehicles have gained great importance for energy storage today. However, how to prepare cathode materials with higher energy density, high potentials, and longer cycle life is still a challenge. Compared with commercial LiCoO2, vanadium oxides have higher specific capacity and interesting layered structures, w...
متن کاملPhosphorus‐Graphene Nanosheet Hybrids as Lithium‐Ion Anode with Exceptional High‐Temperature Cycling Stability
A red phosphorus-graphene nanosheet hybrid is reported as an anode material for lithium-ion batteries. Graphene nanosheets form a sea-like, highly electronically conductive matrix, where the island-like phosphorus particles are dispersed. Benefiting from this structure and properties of phosphorus, the hybrid delivers high initial capacity and exhibits promising retention at 60 °C.
متن کامل